Lexus NX: DC / DC Converter Performance (P0A94-553)

DTC SUMMARY

MALFUNCTION DESCRIPTION

This DTC indicates when the temperature of the boost converter has become abnormal. The cause of this malfunction may be one of the following:

Area

Main Malfunction Description

Step

Inverter low-voltage circuit

The connectors are not connected properly

2

Hybrid cooling system

Coolant is leaking, insufficient coolant level, frozen or the passenger of coolant is clogged.

3

Resolver

Open or short circuit in the motor resolver, generator resolver or rear motor resolver

4, 5, 6

Motor, generator or rear motor

  • Open or short circuit in the motor, generator or rear motor coils
  • An internal motor, generator or rear motor malfunction (iron particles or damage from foreign objects)

7, 8, 9

Inverter

  • Internal circuit malfunction in the inverter for the motor
  • Malfunction in ECU that controls the inverter
  • Malfunction in the sensors for inverter control (current sensor, voltage sensors (VH, VL), etc.)

10

DESCRIPTION

For a description of the boost converter.

Click here

If a malfunction occurs in the boost converter, the MG ECU detects it and transmits this information to the hybrid vehicle control ECU.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Warning Indicate

P0A94-553

DC / DC Converter Performance

Boost converter fail signal detected (overheat):

Overheating or an internal short circuit of the boost converter is detected.

(1 trip detection logic)

  • Wire harness or connector
  • Inverter cooling system
  • Hybrid vehicle transaxle assembly
  • Inverter with converter assembly
  • Cooling fan circuit
  • PCU fuse
  • Hybrid vehicle control ECU
  • Rear traction motor with transaxle assembly
  • Extension wire assembly
  • No. 2 frame wire

Comes on

Master Warning Light:

Comes on

Related Data List

DTC No.

Data List

P0A94-553

  • DC/DC Cnv Temp (Upper)
  • DC/DC Cnv Temp (Lower)

MONITOR DESCRIPTION

If the boost converter overheats, it will transmit an inverter fail signal to the MG ECU. Then the MG ECU will send information about the malfunction to the hybrid vehicle control ECU. Upon receiving this information, the hybrid vehicle control ECU will illuminate the MIL and store a DTC.

MONITOR STRATEGY

Related DTCs

P0A94 (INF 553): FCV detection (over heat malfunction)

Required sensors/components

Boost converter

Frequency of operation

Continuous

Duration

TMC's intellectual property

MIL operation

1 driving cycle

Sequence of operation

None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not stored

TMC's intellectual property

Other conditions belong to TMC's intellectual property

-

TYPICAL MALFUNCTION THRESHOLDS

TMC's intellectual property

-

COMPONENT OPERATING RANGE

Hybrid vehicle control ECU

DTC P0A94 (INF 553) is not detected

CONFIRMATION DRIVING PATTERN

  1. Connect the Techstream to the DLC3.
  2. Turn the power switch on (IG) and turn the Techstream on.
  3. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  4. Turn the power switch off and wait for 30 seconds or more.
  5. Turn the power switch on (IG) and check that there are no abnormalities (abnormal sounds, coolant leaks, etc.).
  6. Turn the power switch on (READY) and turn the Techstream on.
  7. With the shift lever in P, wait for 5 seconds. [A]
  8. With the engine stopped and shift lever in P, depress the accelerator pedal to start the engine. [B]
  9. Enter the following menus: Powertrain / Hybrid Control / Trouble Codes. [C]
  10. Read the current DTCs.

    HINT:

    • If a current DTC is output, the system is malfunctioning.
    • If current DTCs are not output, perform the following steps to check for permanent DTCs.
  11. Check that the permanent DTCs are cleared.
  12. If the permanent DTCs are not cleared, perform a universal trip, and then check for permanent DTCs again.

WIRING DIAGRAM

Refer to the wiring diagram for DTC P1CAC-200.

Click here

Refer to the wiring diagram for DTC P0AA6-526.

Click here

Refer to the wiring diagram for DTC P324E-788.

Click here

Refer to the wiring diagram for the inverter low-voltage circuit.

Click here

CAUTION / NOTICE / HINT

CAUTION:

  • Before inspecting the high-voltage system or disconnecting the low voltage connector of the inverter with converter assembly, take safety precautions such as wearing insulated gloves and removing the service plug grip to prevent electrical shocks. After removing the service plug grip, put it in your pocket to prevent other technicians from accidentally reconnecting it while you are working on the high-voltage system.
  • After removing the service plug grip, wait for at least 10 minutes before touching any of the high-voltage connectors or terminals. After waiting for 10 minutes, check the voltage at the terminals in the inspection point in the inverter with converter assembly. The voltage should be 0 V before beginning work.

    Click here

    HINT:

    Waiting for at least 10 minutes is required to discharge the high-voltage capacitor inside the inverter with converter assembly.

NOTICE:

  • After turning the power switch off, waiting time may be required before disconnecting the cable from the negative (-) auxiliary battery terminal. Therefore, make sure to read the disconnecting the cable from the negative (-) auxiliary battery terminal notices before proceeding with work.

    Click here

  • After troubleshooting and repairing all output DTCs, be sure to replace the inverter with converter assembly. (The inverter with converter assembly may have been broken or damaged due to overheating.)

HINT:

After the repair, clear the DTCs and perform the following procedure to check that DTCs are not output.

  1. Turn the power switch on (READY) and wait for 5 seconds or more.
  2. With the engine stopped and the shift lever in P, depress the accelerator pedal to start the engine.

PROCEDURE

1.

CHECK DTC OUTPUT (HYBRID CONTROL)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Enter the following menus: Powertrain / Hybrid Control / Trouble Codes.

(d) Check for DTCs.

Powertrain > Hybrid Control > Trouble Codes

Result

Proceed to

P0A94-553 only is output, or DTCs except the ones in the table below are also output.

A

Any of the following DTCs are also output.

B

Malfunction Content

Relevant DTC

Microcomputer malfunction

P0A1A-151, 166, 658, 791

Generator Control Module

P0A1B-198, 786, 794

Drive Motor "A" Control Module

P0A1C-709, 710, 713, 797

Drive Motor "B" Control Module

P0A1D (all INF codes)*

Hybrid Powertrain Control Module

P1C2A-155

Generator A/D Converter Circuit

P1C2B-192

Drive Motor "A" A/D Converter Circuit

P1C2C-706

Drive Motor "B" A/D Converter Circuit

P1CA6-156

Generator Control Module Malfunction

P1CA7-193

Drive Motor Control Module Malfunction

P1CA8-708

Drive Motor "B" Control Module Malfunction

P1CAC-200

Generator Position Sensor Angle Malfunction

P1CAD-168

Drive Motor "A" Position Sensor Angle Malfunction

P1CAE-715

Drive Motor "B" Position Sensor Angle Malfunction

P1CAF-792

Generator Position Sensor REF Signal Cycle Malfunction

P1CB0-795

Drive Motor "A" Position Sensor REF Signal Cycle Malfunction

P1CB1-798

Drive Motor "B" Position Sensor REF Signal Cycle Malfunction

P1CB2-793

Generator Position Sensor REF Signal Stop Malfunction

P1CB3-796

Drive Motor "A" Position Sensor REF Signal Stop Malfunction

P1CB4-799

Drive Motor "B" Position Sensor REF Signal Stop Malfunction

P3133-659

Communication Error from Generator to Drive Motor "A"

P3134-661

Communication Error from Drive Motor "A" to Generator

Power source circuit malfunction

P06B0-163

Sensor Power Supply "A" Circuit / Open

P06D6-511

Sensor Reference Voltage "F" Circuit / Open

P06E6-164

Sensor Power Supply "C" Circuit / Open

P1C73-512

Sensor Standard Voltage "F" Circuit / Open

Sensor and actuator circuit malfunction

P0A3F-243

Drive Motor "A" Position Sensor Circuit

P0A40-500

Drive Motor "A" Position Sensor Circuit Range / Performance

P0A41-245

Drive Motor "A" Position Sensor Circuit Low

P0A45-669

Drive Motor "B" Position Sensor Circuit

P0A46-671

Drive Motor "B" Position Sensor Circuit Range / Performance

P0A47-670

Drive Motor "B" Position Sensor Circuit Low

P0A4B-253

Generator Position Sensor Circuit

P0A4C-513

Generator Position Sensor Circuit Range / Performance

P0A4D-255

Generator Position Sensor Circuit Low

P0BEA-290

Drive Motor "A" Phase V Current Sensor Circuit Range / Performance

P0BEE-298

Drive Motor "A" Phase W Current Sensor Circuit Range / Performance

P0BF6-683

Drive Motor "B" Phase V Current Sensor Circuit Range / Performance

P0BFA-685

Drive Motor "B" Phase W Current Sensor Circuit Range / Performance

P0C73-776

Motor Electronics Coolant Pump "A" Control Performance

P0E05-328

Generator Phase V Current Sensor Circuit Range / Performance

P0E09-336

Generator Phase W Current Sensor Circuit Range / Performance

P1C3C-294

Drive Motor "A" Phase V Current Sensor Correlation

P1C3D-302

Drive Motor "A" Phase W Current Sensor Correlation

P1C3E-333

Generator Phase V Current Sensor Correlation

P1C3F-341

Generator Phase W Current Sensor Correlation

P1C4A-288

Drive Motor "A" Phase V Current Sensor Sub Circuit Range / Performance

P1C4F-296

Drive Motor "A" Phase W Current Sensor Sub Circuit Range / Performance

P1C54-326

Generator Phase V Current Sensor Sub Circuit Range / Performance

P1C59-334

Generator Phase W Current Sensor Sub Circuit Range / Performance

P1C6D-501

Drive Motor "A" Phase V Current Sensor Offset Range / Performance

P1C6E-502

Drive Motor "A" Phase W Current Sensor Offset Range / Performance

P1C6F-688

Drive Motor "B" Phase V Current Sensor Offset Range / Performance

P1C70-689

Drive Motor "B" Phase W Current Sensor Offset Range / Performance

P1C71-515

Generator Phase V Current Sensor Offset Range / Performance

P1C72-516

Generator Phase W Current Sensor Offset Range / Performance

P314A-828

Inverter Coolant Pump Speed Signal

P33C1-684

Drive Motor "B" Phase V Current Sensor Sub Circuit Range / Performance

P33C6-686

Drive Motor "B" Phase W Current Sensor Sub Circuit Range / Performance

P33D8-677

Drive Motor "B" Phase V Current Sensor Correlation

P33D9-678

Drive Motor "A" Phase W Current Sensor Correlation

System malfunction

P0A1A-517, 809

Generator Control Module

P0A1B-503, 505, 547, 554, 806

Drive Motor "A" Control Module

P0A1C-118, 124, 169, 693, 812

Drive Motor "B" Control Module

P0A40-504, 506, 549, 556, 808

Drive Motor "A" Position Sensor Circuit Range / Performance

P0A46-120, 126, 171, 695, 814

Drive Motor "B" Position Sensor Circuit Range / Performance

P0A4C-518, 811

Generator Position Sensor Circuit Range / Performance

P0A78-113, 128, 279, 284, 286, 287, 548, 555, 807

Drive Motor "A" Inverter Performance

P0A79-119, 125, 136, 170, 692, 694, 696, 712, 813

Drive Motor "B" Inverter Performance

P0A7A-122, 130, 322, 324, 325, 810

Generator Inverter Performance

P0A90-509

Drive Motor "A" Performance

P0A91-702

Drive Motor "B" Performance

P0A92-521

Hybrid Generator Performance

P0C19-306

Drive Motor "A" Torque Delivered Performance

P0C1A-704

Drive Motor "B" Torque Delivered Performance

P0C76-523

Hybrid Battery System Discharge Time Too Long

P0CA3-442

DC/DC Converter Step Up Voltage Performance

P0D2E-586

Drive Motor "A" Inverter Voltage Sensor Circuit Range / Performance

P0D2F-266

Drive Motor "A" Inverter Voltage Sensor Circuit Low

P0D30-267

Drive Motor "A" Inverter Voltage Sensor Circuit High

P0E32-585

DC/DC Converter Voltage Sensor "A" Range / Performance

P0E33-589

DC/DC Converter Voltage Sensor "A" Low

P0E34-590

DC/DC Converter Voltage Sensor "A" High

P0E71-344

Generator Torque Delivered Performance

P1C2D-587

Hybrid Battery Voltage / DC/DC Converter Voltage Correlation

HINT:

  • *1: If any INF codes are output for this DTC, refer to the corresponding diagnostic procedure.
  • P0A94-553 may be output as a result of the malfunction indicated by the DTCs above.
    1. The chart above is listed in inspection order of priority.
    2. Check DTCs that are output at the same time by following the listed order. (The main cause of the malfunction can be determined without performing unnecessary inspections.)

(e) Turn the power switch off.

B

GO TO DTC CHART (HYBRID CONTROL SYSTEM)

A

2.

CHECK CONNECTOR CONNECTION CONDITION (INVERTER WITH CONVERTER ASSEMBLY CONNECTOR)

Click here

Result

Proceed to

OK

A

NG (The connector is not connected securely.)

B

NG (The terminals are not making secure contact or are deformed, or water or foreign matter exists in the connector.)

C

B

CONNECT SECURELY

C

REPAIR OR REPLACE HARNESS OR CONNECTOR

A

3.

CHECK COOLING SYSTEM

Click here

NEXT

4.

CHECK GENERATOR RESOLVER CIRCUIT

Click here

NEXT

5.

CHECK MOTOR RESOLVER CIRCUIT

Click here

NEXT

6.

CHECK REAR MOTOR RESOLVER CIRCUIT

Click here

NEXT

7.

CHECK GENERATOR HIGH-VOLTAGE CIRCUIT

Click here

NEXT

8.

CHECK MOTOR HIGH-VOLTAGE CIRCUIT

Click here

NEXT

9.

CHECK REAR MOTOR HIGH-VOLTAGE CIRCUIT

Click here

NEXT

10.

CHECK INVERTER LOW-VOLTAGE CIRCUIT

Click here

HINT:

If the "Inverter Low-voltage Circuit" inspection results are normal, perform the next step.

NEXT

REPLACE INVERTER WITH CONVERTER ASSEMBLY

READ NEXT:

 High Voltage Fuse (P0A95-400)

DESCRIPTION The hybrid vehicle control ECU estimates the thermal load of the high voltage fuse. If the accumulated thermal load exceeds the threshold, the hybrid vehicle control ECU will store this DT

 Hybrid Battery Voltage System Isolation Fault (P0AA6-526,P0AA6-611,P0AA6-612,P0AA6-613,P0AA6-614,P0AA6-655)

DESCRIPTION The hybrid vehicle control ECU monitors the battery voltage sensor and detects insulation malfunctions in the high-voltage system. DTC No. Detection Item DTC Detection Condition T

 Hybrid Battery Voltage Isolation Sensor Circuit (P0AA7-727)

DESCRIPTION The hybrid vehicle control ECU monitors the insulation monitoring circuit located in the battery voltage sensor and detects malfunctions. DTC No. Detection Item DTC Detection Condit

SEE MORE:

 Problem Symptoms Table

PROBLEM SYMPTOMS TABLE NOTICE: When replacing the combination meter assembly, always replace it with a new one. If a combination meter assembly which was installed to another vehicle is used, the information stored in it will not match the information from the vehicle and a DTC may be stored. HINT:

 Installation

INSTALLATION CAUTION / NOTICE / HINT HINT: Use the same procedure for the RH and LH sides. The procedure listed below is for the LH side. PROCEDURE 1. INSTALL FRONT FENDER MOULDING SUB-ASSEMBLY LH HINT: When installing the front fender moulding sub-assembly LH, heat the vehicle body and fron

© 2016-2024 Copyright www.lexunx.com